Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types.
نویسندگان
چکیده
Proton nuclear magnetic resonance (1H NMR) spectroscopy is a noninvasive technique that can provide information on a wide range of metabolites. Marked abnormalities of 1H NMR brain spectra have been reported in patients with neurological disorders, but their neurochemical implications may be difficult to appreciate because NMR data are obtained from heterogeneous tissue regions composed of several cell populations. The purpose of this study was to examine the 1H NMR profile of major neural cell types. This information may be helpful in understanding the metabolic abnormalities detected by 1H NMR spectroscopy. Extracts of cultured cerebellar granule neurons, cortical astrocytes, oligodendrocyte-type 2 astrocyte (O-2A) progenitor cells, oligodendrocytes, and meningeal cells were analyzed. The purity of the cultured cells was > 95% with all the cell lineages, except for neurons (approximately 90%). Although several constituents (creatine, choline-containing compounds, lactate, acetate, succinate, alanine, glutamate) were ubiquitously detectable with 1H NMR, each cell type had distinctive qualitative and/or quantitative features. Our most unexpected finding was a large amount of N-acetyl-aspartate (NAA) in O-2A progenitors. This compound, consistently detected by 1H NMR in vivo, was previously thought to ne present only in neurons. The finding that meningeal cells have an alanine:creatine ratio three to four times higher than astrocytes, neurons, or oligodendrocytes is in agreement with observations that meningiomas express a higher alanine:creatine ratio than gliomas. The data suggest that each individual cell type has a characteristic metabolic pattern that can be discriminated by 1H NMR, even by looking at only a few metabolites (e.g., NAA, glycine, beta-hydroxybutyrate).(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Pretreatment prediction of the chemotherapeutic response of human glioma cell cultures using nuclear magnetic resonance spectroscopy and artificial neural networks.
Both tumor metabolism and its response to cytotoxic drugs are intrinsic properties of tumor cells. It is therefore likely that there is a relationship between the two properties, however subtle and complex, wherein the metabolic characteristics of tumor cells can reflect the inherent response (resistance or sensitivity) of these cells to cytotoxic drugs. We used artificial neural network analys...
متن کاملTwo-dimensional J-resolved nuclear magnetic resonance spectral study of two bromobenzene glutathione conjugates.
The application of two-dimensional J-resolved nuclear magnetic resonance spectroscopy to determine the structure of two bile metabolites isolated from rats injected interperitoneally with bromobenzene is described. The structures of the two molecules are obtained unambiguously from the proton-proton spin coupling constants. This paper discusses the fundamentals of the technique and demonstrates...
متن کاملProton-nuclear magnetic resonance studies of the aromatic spin systems of Escherichia coli adenylate kinase.
Escherichia coli adenylate kinase has a very well resolved proton nuclear magnetic resonance spectrum in the region containing signals from aromatic amino acid side-chains. We found that the protein is structurally stable over a wide pH range and renatures spontaneously after acidic as well as basic denaturation. Only one out of the three histidyl imidazole rings titrates on changing the pH and...
متن کاملStudies on the SPEEK membrane with low degree of sulfonation as a stable proton exchange membrane for fuel cell applications
Sulfonated poly (ether ether ketone) (SPEEK) with a low degree of sulfonation (DS = 40%) was prepared for proton exchange membrane fuel cells (PEMFC). Poly (ether ether ketone) (PEEK) was sulfonated in concentrated H2SO4 under N2 atmosphere and characterized by the hydrogen nuclear magnetic resonance (H-NMR) technique. After preparation of the SPEEK polymer, the obtained polymer was dissolved i...
متن کاملProton MR spectroscopy of neural stem cells: does the proton-NMR peak at 1.28 ppm function as a biomarker for cell type or state?
Recently, a peak at 1.28 ppm in proton magnetic resonance spectroscopy ((1)H-MRS) of neural stem cells (NSCs) was introduced as a noninterventional biomarker for neurogenesis in vivo. This would be an urgently needed requisite for translational studies in humans regarding the beneficial role of adult neurogenesis for the structural and functional integrity of the brain. However, many concerns h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 13 3 شماره
صفحات -
تاریخ انتشار 1993